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Abstract

This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion–relaxation
correlation NMR spectra prior to 2D-Laplace inversion to the T2–D domain. The decomposition is advantageous for better interpreta-

tion of the complex correlation maps as well as for the quantification of extracted T2–D components. To demonstrate the new method
seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance
(NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr–Purcell–Meiboom–Gill
(CPMG) pulse echo train. By varying the gradient strength, 2D diffusion–relaxation data were recorded for each sample. From these
double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion–relaxation components, explain-
ing 99.8% of the variation in the data set. These two components were subsequently transformed to the T2–D domain using 2D-inverse
Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct
distribution with peak intensity at D = 3 · 10�12 m2 s�1 and T2 = 180 ms. The water component consisted of two broad populations of
water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10�9 m2 s�1, T2 = 10 ms and
D = 3 · 10�13 m2 s�1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were
effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-
water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the
samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of dif-
fusion–relaxation spectra, as it improves not only the interpretation, but also the quantification.
� 2007 Elsevier Inc. All rights reserved.

Keywords: DRCOSY; PARAFAC; Laplace inversion; Diffusion; Relaxation; Correlation spectroscopy; NMR; PGSTE; Dough; Water; Oil
1. Introduction

Characterisation of water and fat components in food is
of prime importance due to its modulation of important
properties such as taste, texture, oxidation and shelf life.
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Diffusion correlated NMR relaxometry is a unique tech-
nique for characterisation of dynamics, compartmentalisa-
tion and phases of fat and water in food, as it is able to
measure complex solid or semi-solid food matrices such
as meat, cheese, dough and bread. This correlation tech-
nique, in which 2D-Laplace inversion NMR is used to pro-
vide a map in T2–D space, is used to analyse the complex
multi-exponential behaviour of the relaxation and diffusion
rates in heterogeneous systems. It enables us to obtain a
plot that is easy to interpret and separates components of
a system via their dynamics, revealing additional informa-
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tion by correlating these molecular motions when com-
pared with a 1D technique [1–3].

2D diffusion–relaxation data are double-exponentially
decaying landscapes and thus second order data structures.
Data from series of complex samples can with advantage
be analysed using multi-way chemometric methods, as
these will provide for unique resolution of pure component
landscapes. Multi-way analysis has successfully been
applied in several chemical fields including fluorescence
emission–excitation spectroscopy [4] and 2D NMR spec-
troscopy [5,6]. The key issue in multi-way analysis is to
have access to boxes of data rather than tables of data.
Usually, a single spectrum is recorded for each sample.
Data for several samples are then gathered in a matrix/
table. If, instead, the data are recorded as a function of
two variables (e.g. residual magnetisation as a function of
time, yielding relaxation, and as a function of magnetic
field gradient, yielding diffusion), then the data from one
sample are contained in a matrix. For several samples a
box of data is obtained. Such multi-way data can be mod-
elled with specialized tools that take particular advantage
of the data structure. Most notably, the so-called PARA-
FAC model [7] is an interesting alternative to traditional
data analysis tools, because it allows resolving complex
mixture measurements into the pure single-component
spectra. The advantage of PARAFAC in this context is
its ability to provide unique solutions to data that are
approximately multi-linear. T2–D weighted relaxation data
is one example of trilinear data. These can be decomposed
by PARAFAC into a few pure and unique physico-chemi-
cal components with exactly the same data structure as the
original data. A subsequent T2–D Laplace inversion of the
resolved components will then provide the T2–D distribu-
tion profile of the pure components. The PARAFAC algo-
rithm thus works as a filter, extracting only the systematic
variation from a coherent set of DRCOSY recordings,
while leaving out the non-systematic variation in the resid-
uals. The combined method constitutes a significant
improvement to the complex T2–D Laplace inversion of
individual samples in which the researcher has no objective
means of assessing if individual peaks represent physico-
chemical components or artefacts that appear due to the
ill-conditioned problem and unfortunate choice of regular-
isation. A conceptual sketch of the new composite method
demonstrated in this paper is shown in Fig. 1.

2. Theory

The correlated measurement of diffusion and spin rela-
tions by NMR requires the use of an r.f. and magnetic field
gradient pulse train which ‘‘encodes’’ for both parameters
on the same nuclear spin magnetisation. The separate
encoding methods for diffusion and relaxation are
described in detail elsewhere [8]. The combined DRCOSY
method uses a pulsed gradient stimulated echo (PGSTE)
[9,10] followed by a Carr–Purcell–Meiboom–Gill (CPMG)
pulse echo train [11,12]. During that CPMG train the spin
magnetisation signal, M, relative to the initial echo ampli-
tude, M0, is sampled, both as a function of time, t, during
the train, and gradient strength, q2 applied in the PGSTE
sequence before the train. This the signal is acquired in a
2D (t, q2) space as:

Mðt;q2Þ
M0

¼
X

pðD;T 2Þe�q2DðD�d
3Þe

�t
T 2 þ eðt;q2Þ and q¼Gcd;

ð1Þ

where D is the diffusion observation time, c is the gyromag-
netic ratio, d is the gradient duration and G is the gradient
strength. Eq. (1) thus assumes a distribution of diffusion
coefficients, D, and relaxation times, T2, with joint proba-
bility, p [13].

In order to obtain the distribution p, the experimental
data must be inverted using 2D-Laplace inversion. This is
done according to Song et al. (2002) [14] by considering a
the discrete matrix form of Eq. (1):

M ¼ K1XK02 þ E ð2Þ

where K1 and K2 are the known matrices of the exponen-
tials in Eq. (1) for the observation time and gradient
strengths used while choosing a discrete number of relaxa-
tion times and diffusion coefficients in a specified range.
Thus, the window of observation and resolution is chosen
by the investigator and the applicability (robustness) limits
of the algorithm. X is the unknown T2–D distribution ma-
trix extracted by minimising:

v2 ¼ kM� K1XK02k
2 þ akXk2 ð3Þ

where a is a regularisation factor set by the user depending
on the desired smoothness of the result and i Æ i is the
Frobenius norm. Choosing an appropriate a is not straight-
forward; however, when following the usual guidelines [14],
in which a is adjusted to just minimize v2, the results are of-
ten readily interpretable. In contrast to the PARAFAC
model, the Laplace inversion problem is ill-conditioned
and depends on the algorithm used for regularisation and
the set of parameters used. Thus, caution must be taken
when interpreting and quantifying peaks in the T2–D

spectra.
In this work we aim to investigate if the inherent labile

nature of the Laplace inversion procedure can be improved
by resolving (filtering) the unique components using the
PARAFAC algorithm [7] prior to the 2D-Laplace transfor-
mation of the data. Using parallel factor analysis (PARA-
FAC) we stack the 2D landscapes of the different samples
in a 3D array, M, of the size: I · J · K. I is the number
of samples, J is the number of gradient steps and K is the
number of time points. If the data is tri-linear, each obser-
vation point, mijk in M, can be described uniquely as:

mijk ¼
XF

f¼1

aif bjf ckf þ eijk; i ¼ 1; . . . ; I ;

j ¼ 1; . . . ; J ; k ¼ 1; . . . ;K

ð4Þ



Fig. 1. Concept scheme of the method demonstrated. Raw 2D diffusion–relaxation NMR data (upper left) can be directly transformed into the T2–D

domain (upper right) by Laplace inversion or as suggested here via spectral decomposition by PARAFAC (lower left) to unique T2–D PARAFAC-Laplace
components (lower right).
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where F is the number of PARAFAC components, af, bf

and cf are the PARAFAC scores of lengths I, J and K,
respectively, and aif is the ith element of af, bjf is the jth ele-
ment of bf and ckf is the kth element of cf. A graphical rep-
resentation of the PARAFAC model with two components
is found in Fig. 2, where M is the original box of data.
Mode 1 is samples, mode 2 is relaxation time, t, and mode
3 is the gradient strength, q2. PARAFAC decomposes the
data into two unique components consisting of three load-
ing vectors, one for each mode, and a residual matrix, E.
By taking the outer product of loading 2, bf, and loading
3, cf, of each component the components are now repre-
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Fig. 2. Graphical representation of a 3-way array, M, decomposed by
PARAFAC into two unique components and a residual, E. See text for
thorough explanation.
sented by a 2D-loading spectrum with an associated sample
loading, af, holding the concentrations of the components
of in each sample. The sample loading vectors are also
termed score vectors. Thus each sample is now decomposed
into a weighted sum of unique 2D diffusion–relaxation
spectra and a residual matrix. The weights are the sample
scores in mode 1.

Eq. (4) is completely unaffected by the underlying distri-
butions in Eq. (1) of the pure physico-chemical compo-
nents, as the PARAFAC algorithm is not restricted by
the mathematical relationship within the components.
PARAFAC simply extracts independently varying additive
components. The prerequisite for this extraction is, that a
number of samples is recorded in a manner by which the
components of interest are purposely varied either by
design or by natural variation.

The aim of this investigation is to demonstrate that
PARAFAC in practice is able to resolve pure 2D diffu-
sion–relaxation components on a set of samples containing
the same components, but in different proportions. When
this is achieved and the quantification is thus in place,
interpretation is straightforward by subsequent application
of the 2D Laplace inversion to the pure 2D diffusion–relax-
ation components. The hypothesis is that application of
PARAFAC will facilitate a more direct interpretation
and robust application of the 2D Laplace inversion. The
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particular experimental system used comprises wheat
doughs. This system was chosen, because it provides suffi-
cient complexity in the T2–D spectrum and because of the
inherent interest in developing robust 2D-inverse Laplace
methods for the food industry.

3. Experimental

3.1. Materials

Five wheat flour samples from a Danish/German field
experiment were used. They were chosen for their diverse
quality with respect to baking quality and functionality.
An even greater diversification of samples in this investiga-
tion was obtained by mixing the following ingredients:
wheat starch (Unmodified, Sigma CAS 9005-25-8), wheat
gluten (Sigma, CAS 8002-80-0), commercially available
soy oil and commercially available high-grade wheat flour
available in New Zealand (trademark: Champion).

3.2. Characterisations

An extensive characterisation of the Danish/German
wheat flours was performed for other purposes and will
be elaborated elsewhere. The mixing property with regards
to water uptake was investigated using a Farinograph
according to ICC standard No. 115/1. The commercially
available flour was characterised using a Foss NIRS
(near-infrared reflectance spectroscopy) Bench Analyser
with an in-house calibration at Weston Milling, Lower
Hutt, Wellington for estimation of several parameters
including moisture and Farinograph water absorption.
The water content of the flours as well as the starch and
the gluten were determined by gravitational method prior
to mixing the doughs. Two gram of the materials were
dried at 130 �C for 1.5 h and scaled before and after
according to ICC standard No. 110/1 (Table 1).

3.3. Dough preparations

Twelve samples were prepared by mixing wheat starch,
wheat gluten and soy oil following a full factorial design
with three centre points (Fig. 3) and with the commercially
available wheat flour as filler to a 43 g dm sample, i.e. equal
to 50 g sample at 14% moisture. The factorial ingredients
were used in three levels each: starch: 0, 10.0 and
20.0 g dm; gluten: 0, 3.5 and 7.0 g dm; oil: 0, 1.0 and
2.0 g (Fig. 3). The dry matter mass of commercial flour
was thus dependent on the levels of pure ingredients and
varied between 14.0 and 43.0 g dm. To all mixtures 30 g
of water was added, thus assuming an average of 60%
water uptake based on 14% moisture in all the mixtures.
The sum of the moisture contents of the ingredients and
the added water in the samples added up to 37 g in all mix-
tures equal to 46% of the total mass (Table 1). The mixed
samples were prepared and recorded in random order. The
Danish/German wheat flour samples were included for nat-
ural variation in the experimental setup (Fig. 3). They were
only mixed with water according to their water absorption
and actual moisture content (Table 1).

A 50MDD Laboratory Mixer, Lincoln, New Zealand
was used for preparing the doughs. In the running mixer
the flour samples and, respectively, the mixture samples
were added to the mixing chamber. The ingredients of
the mixture samples were added consecutively in the fol-
lowing order: flour, starch, gluten and soy oil. After tem-
pering at 34 �C for 2 min the dough preparation was
initiated by adding water (34 �C) in amounts correspond-
ing to the water absorption capacity and the energy coun-
ter was simultaneously reset. The doughs were mixed for
49–259 s depending on the dough consistency development
until the energy input reached 10.0 Wh/kg dough. The aim
of the procedure was to add an equal amount of work into
each sample and thus to produce samples in a uniform and
reproducible way.

3.4. NMR recordings

Immediately after preparation a small amount of dough
was inserted bit by bit into a 5 mm wide NMR tube using a
piston rod to pack the material while avoiding air bubbles
to form. The tube was filled up to 3 cm in order to fully
cover the sampling area of the tube. The tube was inserted
into a Bruker Avance 300 System fitted with a Bruker
36 T m�1 gradient coil, capable of applying a strong spe-
cific perturbation of the magnetic field along the z direc-
tion. The machine was operated from a UNIX PC
running xwinnmr version 3.6.

A DRCOSY pulse program was written consisting of a
pulsed gradient stimulated echo (PGSTE) followed by a
Carr–Purcell–Meiboom–Gill (CPMG) echo train (Fig. 4).
The p/2 and p hard pulses were applied for 5.2 and
10.4 ls, respectively. The PGSTE was initiated by a p/2
hard pulse, initiating a free induction decay (FID) followed
by a magnetic field gradient pulse, two consecutive p/2
hard pulses and a magnetic field gradient pulse of exactly
the same size as the first after which a stimulated echo
occurs depending on the size of the gradient. The peak
intensities of echoes were then recorded during a CPMG
sequence.

In 25 consecutive PGSTE+CPMG runs the gradient
strength was varied from 0 to 12.96 T m�1 in 25 approxi-
mately exponentially spaced steps with constant diffusion
observation time, D = 20.00 ms and gradient duration,
d = 2.00 ms with ramp times of 500 ls in 10 steps, i.e. ramp
up time of 500 ls, stable time of 1500 ls and ramp down
time of 500 ls. The q-encoding gradient pulses were
flanked by delays of 500 ls immediately before and after
the gradient. The latter was applied specifically to allow
for the ring down of induced eddy currents in the sur-
rounding metals before applying the 2nd p/2 hard pulse,
the spin-conserving pulse. During the z-storage time of
16,489.6 ls before the 3rd p/2 hard pulse a crusher gradient
(homospoil) was ramped in 4 steps of 50 ls to 5% of



Table 1
Twelve mixtures named by their contents of starch (S), gluten (G), fat (F) denoted by 0, 1 and 2 for levels zero, medium and high, respectively

Sample
#

ID Quantities of ingredients (% moisture) Mixing
time

Totals

Starch
(11.2%) (g)

Gluten
(7.9%) (g)

Fat (—)
(g)

Flour
(12.9%) (g)

Moist. in
mixture (%)

Water upt.
(14% moist.) (%)

Water
added (g)

Sample
mass (g)

Water
(%)

Added fat
(%)

S01 S0G0F0 0.0 0.00 0.0 49.4 12.9 60.0 30.6 01:05 80.0 46.3 0.00
S02 S0G2F0 0.0 7.60 0.0 41.3 12.1 60.0 31.1 00:49 80.0 46.3 0.00
S03 S2G0F0 22.5 0.00 0.0 26.4 12.1 60.0 31.1 01:55 80.0 46.3 0.00
S04 S2G2F0 22.5 7.60 0.0 18.4 11.3 60.0 31.5 01:12 80.0 46.3 0.00
S05 S0G0F2 0.0 0.00 2.0 47.1 12.3 60.0 30.9 01:57 80.0 46.3 2.50
S06 S0G2F2 0.0 7.60 2.0 39.0 11.6 60.0 31.4 01:14 80.0 46.3 2.50
S07 S2G0F2 22.5 0.00 2.0 24.1 11.6 60.0 31.4 04:19 80.0 46.3 2.50
S08 S2G2F2 22.5 7.60 2.0 16.1 10.8 60.0 31.8 01:42 80.0 46.3 2.50
S09 S2G2F2 22.5 7.60 2.0 16.1 10.8 60.0 31.8 02:19 80.0 46.3 2.50
S10 S1G1F1 11.3 3.80 1.0 32.7 11.8 60.0 31.2 01:27 80.0 46.3 1.25
S11 S1G1F1 11.3 3.80 1.0 32.7 11.8 60.0 31.2 01:27 80.0 46.3 1.25
S12 S1G1F1 11.3 3.80 1.0 32.7 11.8 60.0 31.2 01:34 80.0 46.3 1.25
S13 03KCF3 — — — 50.1 14.1 58.9 29.4 01:24 79.5 45.9 0.00
S14 03AVF3 — — — 50.3 14.5 53.5 26.5 00:55 76.8 44.0 0.00
S15 04KCF1 — — — 49.8 13.6 58.6 29.5 01:21 79.3 45.8 0.00
S16 04AVF1 — — — 49.8 13.7 52.5 26.4 01:17 76.3 43.6 0.00
S17 04APRf — — — 49.8 13.6 61.2 30.8 01:21 80.6 46.7 0.00

Flour is added to obtain a 43 g dm sample and water is added assuming a 60% water uptake (based on 14% water) for all mixtures. Five additional samples flour of different origin, water content and
water uptake is also included. Names refer to year (03/04), place (K, Kiel; A, Aarslev), cultivar (C, Carbo; V, Vinjet; P, Pentium) and treatment (F1, fraction 1; F3, fraction 3; Rf, Reference).
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centre points (S1G1F1) and the sample with high levels in all factors
(S2G2F2) is represented twice. Five additional samples (S13–S17) are
indicated. See Table 1 for details.
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maximum gradient strength (i.e. 1.8 T m�1) and kept for
1.0 ms before being ramped down again. By destroying
unwanted transverse magnetisation the crusher effectively
removed potential interference from the spin echo of the
initial r.f. pulse-FID generated by the second hard pulse
and thus also the FID from the second r.f. pulse that would
otherwise become an echo after the third r.f. pulse. In order
for the gradient to stabilise, i.e. reach steady state, ten
dummy gradient pulses as described above, but without
the hard pulses, were applied before the initial p/2 hard
pulse.

The spin echo signal from the PGSTE pulse sequence
was recorded during the subsequent CPMG pulse sequence
with a time delay of 100 ls between the p hard pulses
(10.4 ls) and the echo centres, thus the echo time,
s = 105.2 ls. Three points in every second echo centre were
recorded and subsequently averaged. Fourthousand and
ninety-six even echoes were acquired during the 1.724 s
CPMG pulse sequence. Four scans were made for every
gradient step with a repetition delay of 1.977 s. The entire
DRCOSY pulse sequence would thus run for 398.9 s.

3.5. Data processing

Data processing was performed using commercially
available software packages, Prospa V2.0.12, Magritek,
Wellington, New Zealand and Matlab Version 6.5 release
z

Fig. 4. The pulse program as used to collect the 2D diffusion–relaxation data.
made at peak intensity for every 2nd echo.
13, The MathWorks, Inc. Conversion and pre-processing
of the data was made in Prospa as were the 2D-inverse
Laplace transformations, while PARAFAC was run in
Matlab using the N-way toolbox [15] from www.mod-
els.life.ku.dk. For every sample the resulting matrix of
25 · (3 · 4096) real and imaginary recordings was imported
into Prospa. The three points in every echo were averaged
and the real and imaginary recordings were summed. Since
the DRCOSY pulse sequence does not produce meaningful
data at zero gradient strength, the first data row was
removed. The first column representing the initial echo
recording was also removed due to deviating non-exponen-
tial values in the first of the three points recorded. Follow-
ing this procedure the total data set was reduced to the
dimensions: 17 samples · 24 gradient steps · 4095 acquisi-
tion times. As there was no internal standard and no con-
trol of the actual sample mass in the measured volume of
the NMR tube, all samples were normalised with maxi-
mum intensity, i.e. the intensity of the first acquisition
point assuming similar amounts of fast relaxation compo-
nents in the samples.

For every gradient strength, Gi, the gradient axis values
were calculated by:

gradaxisi ¼ q2 D� d
3

� �
¼ ðGicdÞ2 D� d

3

� �
ð5Þ

with the gyromagnetic ratio c = 2.675 · 109 s�1 T�1 and
Gmin = 0.216 T m�1 and Gmax = 12.96 T m�1 the gradient
axis thus spans from 0.258 · 109 to 929.447 · 109 s m�2.
The time axis associated with T2 relaxation consisted of
equidistant time point for every 420.8 ls corresponding
to every 2nd echo beginning at time point 7.8416 ms corre-
sponding to the actual duration of the two gradient pulses
and the disregarded first echo. These axes were required
when performing the 2D-inverse Laplace transformations
in Prospa of the raw sample recordings as well as the
PARAFAC components and residuals (see below).

A two-component PARAFAC model was calculated
using non-negativity constraints in all three modes. For
each component in each sample the three modes, intensity,
aif, time, bf, and gradient, cf, were subsequently multiplied:
aif bf cT

f , as illustrated in Fig. 2. Thus, for each of the
Snglei
Point
acquisition

Effectively a PGSTE followed by a CPMG echo train, where acquisition is
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seventeen samples, four 2D-matrices (raw, components 1
and 2 and the PARAFAC-residual) were produced and
subsequently imported into Prospa. 2D-Laplace inversions
were performed using the optimal regularisation factors, a,
as determined by testing a range of reasonable values for
each sample, component and residual (Fig. 8). T2 and D
axes, i.e. the observation window, were chosen as follows:
T2,min = 1 · 10�3 s, T2,max = 1.5 s, Dmin = 1 · 10�16 m2 s�1

and Dmax = 1 · 10�7 m2 s�1 in 24 logarithmically spaced
steps in both directions. The T2 and D boundaries were
chosen purposely too wide to include T2–D space where
no intensities should be observed. This helps in determining
the quality of fit, keeping the elasticity of the regularisation
factor in mind.

T2–D correlation pairs were identified from the resulting
spectra of raw data, components 1 and 2 and the PARA-
FAC residuals from each sample and quantified by their
sum relative to total spectral intensity of each raw sample
spectrum, respectively. The qualitative as well as the quan-
titative aspects were compared for two selected samples
and the intensity ratios of components 1 to component 2
were compared to the known ratios of oil and water in
the samples.

4. Results and discussion

The major variation introduced in this investigation was
imposed by the factorial design varying the major compo-
nents, starch, gluten and fat of wheat dough, while keeping
the water concentration constant. This was, however, not
the case of the additional flour samples that included only
natural variation and water concentration corresponding
to the optimal water absorption (Table 1). Despite the rel-
atively complex composition of dough with protons associ-
ated with carbohydrates, protein, fat and water, it was
expected that only protons associated with molecules with
high rotational and translational (diffusion) freedom could
be observed in this experiment. Thus, only water and oil
components were expected, possibly influenced by the pro-
portions of other components, i.e. starch and gluten, of the
mixture. Wheat flour contains 1.5–2.5% lipids of which
roughly one third is mono-, di- and tri-glyceride lipids,
one third is starch lipids and one third is bound lipids (gly-
colipids and phospholipids). In dough, glycolipids and glu-
ten-bound phospholipids are thought to form a laminar
phase, stabilising a micro-emulsion of free phospholipids
and acyl lipids in water all encapsulated by the gluten net-
work [16].

Table 1 lists the mixture proportions of the samples. The
assumed water absorption of 60% in the commercial flour
was not correct, as the true value was determined to
64.1%. However, this is of no importance in the current
study, since the optimal water absorption of the mixtures
was unknown and the water absorption level was set
merely to be able to form a visco-elastic dough, regardless
of the proportions of starch, gluten, fat and flour. The
varying mixing time thus reflects the variation in rheologi-
cal properties of the various mixtures. As expected, high
levels of starch and/or fat prolong the mixing time, while
high levels of gluten hardens the dough, resulting in shorter
mixing times. The diverse proportions of major ingredients
were thus expected to create variation in the micro-envi-
ronments for water and fat in the mixtures to be explored
by the NMR recordings.

The PARAFAC model of the seventeen recorded double
exponentially decays was derived from running the model
with 1–4 components. The validity of the models was ini-
tially explored by simultaneous inspection of the loadings,
the explained variance, core consistency and number of
iterations [7,17]. From this exercise it was easily concluded
that only a model with either two or three components
could be valid. The two-component model had a core con-
sistency of 100%, while that of the three-component model
was close to 60%. By subsequent inspection of the loadings
the third component displayed deviant behaviour from the
exponential decay in the gradient mode and thus the two-
component model was chosen. The chosen two-component
model presented in Fig. 5 explains 99.8% of the variation in
the entire data material.

In Fig. 5 the PARAFAC results were normalised to
maximum intensity in the exponential decay modes (i.e.
modes 2 and 3), thus leaving the relative variation in the
sample mode for direct quantification of components
(Fig. 5a). Due to the second order advantage of the PARA-
FAC algorithm the scores in mode 1 need only to be scaled
to one reference value in order to give the pure component
concentrations. In the two component PARAFAC model,
component 1 scores were positively correlated with the
added fat content, while component 2 scores were inversely
correlated. Since the NMR recordings are only expected to
return signals from oil and water, components 1 and 2 were
quantitatively assigned to oil and water, respectively, on
the basis of the scores (Fig. 5a). In mode 2, the relaxation
time mode in Fig. 5b, two distinct exponentially decaying
components are resolved; component 1 with a significantly
slower decay than component 2, both decaying to approx-
imately zero intensity. In mode 3, the gradient intensity
mode in Fig. 5c, two distinct, apparently exponentially
decaying components are observed; component 1 has a sig-
nificantly slower diffusion than component 2. Component
2, however, clearly appears to be multi-exponential with
a very slow diffusing covarying feature that does not reach
zero intensity within the chosen limits of gradient strength.

A powerful visualisation taking the outer product as
illustrated in Fig. 2 of the individual component vectors
from mode 2 and mode 3 of the two PARAFAC compo-
nents is presented in Fig. 5d and e. The combined corre-
lated decays are readily visualised for further
interpretation by transformation to the T2–D domain. It
is thus possible by PARAFAC to decompose raw 2D-
decays from each sample into their pure components and
a sample specific residual matrix. This is done in the left
columns of Figs. 6 and 7 for two markedly different sam-
ples, S01: S0G0F0 and S08: S2G2F2, presented with equal
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scaling for proportional interpretation. For interpretation
and further quantification the raw data, the two compo-
nents and the residual 2D-data are transformed into the
T2–D domain by 2D-Laplace inversion in the right column.
Figs. 6 and 7 are thus the actual decomposition conceptu-
ally presented in Fig. 1.

In Fig. 6 sample S01: S0G0F0 is presented both in the
time-gradient domain and in the T2–D domain. From the
raw data (Fig. 6a) it is quite clear that the data is composed
of both fast and slow diffusing features as well as fast and
slow relaxation features. By the 2D-Laplace inversion
(Fig. 6b) this is nicely visualised as nine peaks as T2–D

pairs along with their approximate relative intensities listed
in Table 2. Peaks with less than 1% of maximum intensity
are not represented in the figure nor in the table, for which
reason the sum of listed peaks only sums to 99.1%. In com-
parison, sample S08: S2G2F2 displays eight peaks in
Fig. 7b. Peaks P1–P7 are common for both S01 and S08,
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Table 2
Intensities of peaks P1–P10 as identified in Figs. 6 and 7 in the T2–D domain for sample S01 and S08

Peak T2 [ms] D[m2 s�1] S01: S0G0FO S08: S2G2F2

Raw PARAFAC Raw PARAFAC

Comp 1 (%) Comp 2 (%) Residual (%) Sum (%) Comp 1 (%) Comp 2 (%) Residual (%) Sum (%)

Total int All All 100.0 2.2 102.5 0.1 104.8 100.0 12.0 92.8 1.4 106.2
P1 10 1 · 10�9 88.6 95.9 95.9 78.1 86.8 86.8
P2 13 3 · 10�13 4.5 4.3 4.3 6.4 3.9 3.9
P3 6 1 · 10�16 1.5 1.6 1.6 0.9 1.5 1.5
P4 50 1 · 10�12 0.6 0.6 0.6 0.6 0.6 0.6
P5 180 1 · 10�12 1.8 2.2 2.2 10.2 12.0 12.0
P6 1.6 5 · 10�14 0.6 0.0 1.4 0.0
P7 2.5 1.5 · 10�8 0.2 0.0 1.1 0.0
P8 1.3 5 · 10�10 0.5 0.0 0.0 0.0
P9 130 8 · 10�11 0.8 0.0 0.1 0.0
P10 300 3 · 10�8 0.0 0.0 1.1 0.0
Sum 99.1 2.2 102.5 0.0 104.6 99.6 12.0 92.7 0.0 104.8
Residual 0.9 0.0 0.0 0.1 0.1 0.4 0.0 0.0 1.4 1.4

Intensities are presented as relative to total intensity of the respective raw spectrum. Peaks are summed leaving an unrealised residual for each spectrum,
i.e. Raw, Comp 1, Comp 2 and PARAFAC-Residual. The PARAFAC-Laplace peaks are summed horizontally.
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while P8 and P9 are only present in S01 and P10 is present
only in S08.

The challenges in the interpretation of the similarities
and deviations of these and the remaining samples are
overwhelming, although some delimitation can be put for-
ward by manual inspections. Peaks with diffusion coeffi-
cient higher than say 10�8 m2 s�1 must be considered
noise, since the limit of diffusion in this system must be
considered to be the diffusion of free water, i.e.
2 · 10�9 m2 s�1. Likewise, peaks below T2 = 10 ms are
unlikely, since the duration of the pulsed gradient time
(7 ms) and the storage time (16.5 ms) would probably ren-
der such signals extinct prior to the first recordings by the
CPMG train. Thus, P6, P7, P8 and P10 in Figs. 6b and 7b
are artefacts due to noise and the ill-conditioned Laplace
inversion. P3 is a typical border phenomenon due to a
small offset in the raw data along the gradient direction.
Thus, by reasoning it is possible to reduce the problem to
five peaks of interest. Apart from peak P9 present only in
S01, all relevant peaks are present in both samples. P1 is
by far the most intense with 88.6% for S01 and 78.1% for
S08 (Table 2) and considering the high diffusion coefficient
it must be water being able to move freely in the matrix,
although restricted in rotational freedom (T2 = 10 ms),
thus probably associated with the surfaces of the matrix,
i.e. the gluten network. P2 at 4.5% and 6.4%, respectively,
equally restricted in rotational freedom is much more
restricted in diffusion with a broad distribution of diffusion
coefficients that indicate tightly bound water, probably
associated with water absorption by swelling starch gran-
ules. P4 is very small, 0.6% for both, and only identified
as a peak due to the new method (see Section 4 below).
P5 varies markedly between the two samples, 1.8% in S01
and 10.2% in S08, proportional with the difference in oil
content for the two samples. In Fig. 7b, S08 peak P5 forms
a double peak which will be discussed below. With
D = 10�12 and T2 = 180 ms P5 is most probably fat
restricted in diffusion by the size of the vesicles in the water
matrix and at the same time with more slow relaxation
than the ‘‘free’’ water molecules.

4.1. Qualitative analysis

We will now demonstrate the experiment interpretation
from the point of view of the new method. The samples S01
and S08 were decomposed into the two PARAFAC com-
ponents (Figs. 6c, e and 7c, e) corresponding to their rela-
tive amounts in the raw data and the sample-specific non-
systematic residual (Figs. 6g and 7g). The residual is the
difference between original sample recording and the
PARAFAC components. While transforming the PARA-
FAC components 1 and 2 and the residual rather than
the raw data by 2D-Laplace inversion only common struc-
tures to the entire set of samples are investigated (Figs. 6d,
f, h and 7d, f, h). Keeping in mind that 99.8% of all the var-
iation in the set of 2D-multi-exponential data is explained
by just two PARAFAC components justifies this approach
when investigating these data.

First we observe that only peaks P1–P5 are represented
in the PARAFAC-Laplace components 1 (Fig. 6d, f) and 2
(Fig. 7d, f). The residuals did not contain any significant
exponential behaviour, which was also the case for all other
samples and accordingly the T2–D plots are empty (Figs.
6h and 7h). Component 1 contains one peak only (Figs.
6d and 7d)—the P5 fat component described above. Being
a PARAFAC component shows that this component varies
between samples independently from the other compo-
nents. This is in fine accordance with the fact that oil con-
tent was varied purposely in the design of the experiment.
PARAFAC-Laplace component 2 in Figs. 6f and 7f con-
tains P1–P4, in which P4 was only recognised in its own
right by this method. In the T2–D spectra of the raw data
this was not readily observed, as this peak was both small
and overlapping with P5. The PARAFAC-Laplace decom-
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position thus shows that the water found in three different
compartments in the matrix is highly covarying, which in
turn indicates that the water compartmentalisation in this
study of dough at 34 �C is highly unaffected by the propor-
tions of starch, gluten and oil. In Table 2 the proportionate
intensities of the peaks in the PARAFAC-Laplace compo-
nents are presented relative to total intensity of the
summed peaks of the raw Laplace data. Due to the non-
uniqueness and labile character of the Laplace algorithm
these intensities do not add up to 100%—but relatively
close. The relative proportions of the components (Compo-
nent 1/Component 2) in S01, 2.2%/102.5% directly corre-
spond to the summed proportions, 1.8%/95.2% in the
spectrum of the raw data as in the S08 case where the
12.0%/92.7% component ratio corresponds to the 10.2%/
86.0% ratio of the summed raw data. This quantitatively
confirms that the PARAFAC-Laplace decomposition is
equivalent to ordinary direct 2D-Laplace inversion. The
relative quantitative information is conserved.

The fact that the two components when transformed
into the T2–D domain have only a few distinct features
suggests that other features found (i.e. P6–P10) in the
individual raw spectra are only artefacts inflated by the
ill-conditioned properties of the Laplace inversion.
The Laplace inversion estimates many parameters based
on one sample only which gives a poor independent
variable to parameter ratio. Although every 2D-landscape
is generated from multiple scans of thousands of data
points, they are strongly covarying, thus giving a single
error the possibility to be inflated by the data analysis.
Artefacts from unfortunate sample presentation in the
spectrometer, such as different packing of the material,
air bubbles or bad mixing of the sample may turn up in
the spectra and mistakenly be interpreted as components.
PARAFAC resolvation prior to 2D-Laplace inversion
significantly reduces these artefacts by the inherent second
order advantage of reducing noise and uniquely extracting
pure covarying components.

The optimal regularisation factor in the 2D-Laplace
inversion was calculated independently for raw sample
spectra, PARAFAC components 1 and 2 and PARAFAC
residuals individually. A high factor produces results with
many sharp features, while a low factor produces a
smooth result. The optimum is somewhere in between,
where the residual variance expressed by v2 is close to
the mathematical optimum, i.e. lowest obtainable value
that at the same time produces relatively smooth and
interpretable plots. The actual regularisation chosen is
somewhat subjective and based on experience. From
Fig. 8 the regularisation factors were chosen to the near-
est order of magnitude. Note that v2 for the PARAFAC
residuals did not vary significantly in the a-plot, as it is
noise being modelled by the 2D-Laplace inversion algo-
rithm with no or insignificant exponential behaviour left.
In practice, the regularisation factor is quite difficult to
determine from sample to sample, but should ideally be
the same for all samples in order to interpret and com-
pare spectra, i.e. with the same smoothness independent
of the variations in signal-to-noise ratio from sample to
sample.

The signal/noise ratios for the PARAFAC components
do not vary from sample to sample, as they are represented
in all samples—just in different proportions. This leads to a
key point that only these two—not seventeen a’s need to be
determined, i.e. aopt = 108 for component 1 and aopt = 109

for component 2 (Fig. 8). The fact that components 1 and 2
use different regularisation factors is due to their difference
in intensity and thus different signal/noise ratio. In this
example the most intense component dominates when
determining the regularisation of the raw sample data. This
is nicely illustrated by the samples presented in Figs. 6b and
7b in which peak, P5, appears as a single peak in T2–D

spectrum of S01, while it is a double peak in S08. The water
peak, P1, is the dominant signal and will as an apparent
optimum choose araw = 109 (Fig. 8), even though this value
is not optimal in relation to the weaker peak(s). Thus, non-
significant features and noise in the data lead to confusing
sharp peaks, double peaks (Fig. 7b) and non-physical
peaks in spectra. On the other hand, focusing on the
weaker peaks in the raw data by choosing a smaller a
would eliminate non-physical peaks, but at the same time
broaden the more intense peak(s) and even intercept smal-
ler true peaks. PARAFAC analysis prior to the 2D-
Laplace inversion elegantly solves this dilemma by separat-
ing the true physico-chemical components prior to the
change of domain by Laplace inversion.

Because artefacts are introduced by the Laplace trans-
formation as described above and because the choice of
regularisation factor plays a significant role depending on
the signal/noise ratios of the sample spectra the theoreti-
cally possible route of running PARAFAC in the T2–D

domain as indicated in Fig. 1 by arrow with a question
mark was quickly abandoned.

4.2. Quantitative analysis

The ratio between oil and water can be studied quantita-
tively, and these data are presented in Fig. 9. A theoretical
ratio is calculated from a commonly accepted level of acyl
lipids in flour (0.7%) and the amount of fat which was added
to the samples. In both water and oil the approximate num-
ber of H-atoms relative to molecular mass is 1/9, thus the
relative abundance of fat–H to water–H can be calculated
directly by their masses and by their presence in the
DRCOSY data. Component 1 versus component 2 ratios
are plotted for each sample directly from the PARAFAC
scores in mode 1 (Fig. 5a) as well as from PARAFAC-
Laplace spectra of the same components and summed to
total intensity as done for S01 and S08 in Table 2.

Fig. 9 shows the quantitative ratio determined by the
PARAFAC scores as well as PARAFAC-Laplace volumes
of the components 1 and 2. They are both perfectly corre-
lated (r = 0.971) with calculated oil/water ratios in the
samples. In the calculation of the natural oil content the
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average oil contribution from flour (0.7%) was included as
an offset. However, the gluten added in the mixtures may
also contain significant amounts of lipids, as these are usu-
ally not easily extracted from gluten without destroying the
gluten [16]. However, as no quantitative information was
available, the eventual gluten bound fat was neglected in
the calculations. The PARAFAC scores ratio and the
summed PARAFAC-Laplace volume ratios of the two
components are perfectly correlated, i.e. r = 1.000, because
the 2D-Laplace inversion is performed on the exact same
two components for each sample. Thus, for pure quantifi-
cation purposes the Laplace domain transformation may
actually be superfluous.

The PARAFAC scores ratios in Fig. 9 do not overlap
the calculated fat/water ratios, because the PARAFAC
analysis cannot take the relaxation during gradient
encoding in the first 7.8416 ms into account. Fast relaxing
compounds (say, T2 < 20 ms) are thus significantly under-
estimated. The ratios of the summed T2–D spectra of the
two components should ideally be exactly overlapping the
calculated ratios. However, some of the water signal was
probably lost during acquisition due to T2 and T1 relaxa-
tion during gradient and storage time.

In Fig. 9 sample S06: S0G2F2 indeed looks like an out-
lier (knowing the fat content to be high). This is probably
due to bad mixing or packing of the material in the tube
prior to the recording. However, this outlying sample does
not destroy the PARAFAC-Laplace model—it is only the
proportions of water and oil that seem unlikely, taking
prior knowledge into account. When leaving this sample
out of the model, the correlation coefficient between the
calculated and the PARAFAC estimated fat/water ratios
was: r = 0.997.

Although both the PARAFAC ratios and the spectra
ratios of the components are far from the known fat/water
content, the near 100% correlation with known fat/water
ratio is useful. Knowing the actual fat/water ratio of just
one sample, the remaining samples can be calculated from
the PARAFAC scores ratios, even if the fast relaxing water
relaxation signal was not recorded quantitatively. That is
the 2nd order advantage which is of great value in cases
where the method of recording the signal, i.e. the
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DRCOSY, cannot be set optimally for quantitative record-
ing of the signals from fast relaxing components. As long as
all 2D diffusion–relaxation spectra are recorded identically,
relative comparisons are always possible based on the
PARAFAC scores only. The unique PARAFAC resolva-
tion of all varying components is based on having 2D-
matrices of data for each sample, rather than just 1D-
vectors.

5. Conclusions

The method combining the unsupervised PARAFAC
model with 2D Laplace inversion has shown to be a signif-
icant improvement in the analysis of two-dimensional
multi-exponential data recorded by DRCOSY. It allows
identification and quantification of pure components and
it reduces artefacts and stabilises the subsequent 2D
Laplace inversion. This approach supports research by
identifying real systematically varying components while
filtering artefacts associated with unfavourable condition-
ing of the Laplace inversion.

The new procedure can be regarded as a step towards
automatic analysis of DRCOSY and similar data as an
alternative to biased human interpretation. The analysis
requires a homologous set of samples in which specific fac-
tors of interest have been varied either by experimental
design or by natural diversity of the materials investigated.
In a future publication we will demonstrate that double
SLICING [18–20] can be used to extract discrete T2–D
components from a single COSY recording.
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